

TS 4001: Lecture Summary 5

Powering

- Resistance is only the means to get to power.
- The real question is:
 - How fast can the ship go?
 - How much power to install for a required speed?

First Relationships

- (Power) = (Force) x (Speed)
- (Force) ~ (Resistance)
- (Resistance) ~ (Speed)² x (Wetted Surface)
- (Wetted Surface) ~ (Volume)^{2/3} or (Displacement)^{2/3}
- Therefore:
 - (Power) = (Coefficient) x (Speed) 3 x (Displacement) $^{2/3}$
 - This (Coefficient) is known as the "Admiralty Coefficient"

Initial Powering Estimates

- Parametric data most appropriate for concept designs
 - Scaled power from similar ships

$$SHP_{2} = SHP_{1} \left(\frac{V_{2}}{V_{1}}\right)^{3} \left(\frac{\Delta_{2}}{\Delta_{1}}\right)^{\frac{3}{2}} \left(\frac{PC_{1}}{PC_{2}}\right)$$

- Regression analysis of similar ships
- Standard series methods
 - More accurate analysis which requires more detailed information
 - Frictional resistance based on ITTC-57 or other friction line
 - Residuary resistance from Taylor, Series-64, SSPA, or NPL series
 - Many codes exist for these predictions
- Estimated propulsive coefficients
 - Regression analysis for PC, η_o , wake fraction, and thrust deduction
 - Educated guess for transmission, shafting, and \(\eta_P \)

Powering Estimates

- Method of Admiralty Coefficient works well for similar designs.
- Methods such as Silverleaf & Dawson and Holtrop are based on parametric equations and a large regression analysis.
- Estimation of power through systematic series:
 - Estimation of effective power and propeller performance separately.
 - Use the ITTC line for frictional resistance.
 - Estimate or calculate the hull wetted surface.
 - Estimate the residuary resistance through Taylor series, Series 60, etc.
 - Estimate the propeller efficiency through regression analysis or propeller charts.
 - Estimate wake fraction, thrust deduction factor, and relative rotative efficiency from regression formulas.

6

Powering Margins

Design margin:

10% Very early predictions before body plan and appendage configuration

8% Preliminary design predictions made prior to model tests

6%
 Preliminary and contract design after SHP test with stock

propeller with corrections for expected propeller

2% Contract design after SHP test with <u>actual</u> propeller design

Service margin:

- To allow for sea conditions, hull and propeller fouling, etc.
- Typically 10 to 20% below MCR.

Powering Software

- Use similar designs
- Spreadsheet models
- Warship-21
- PPP
- ASSET
- AUTOHYDRO

- P_E or EHP = power needed to tow ship at a given speed in calm water or power to overcome total resistance force R_T at ship speed V.
- P_E=R_TV, where R_T=total resistance and V=speed.
- Can be evaluated straight following resistance calculations.

EHP =
$$\frac{R_T V}{550}$$
 where R_T [lbs], V [ft/sec]

EHP =
$$\frac{R_T V_K}{325.6}$$
 where R_T [lbs], V [knots]

- Propeller is producing thrust, T at a speed of advance, V_A.
- Useful power output of the propeller is called the Thrust Power,
 P_T or THP.

$$P_{T} = TV_{A}$$

$$T \neq R_{T}$$

$$V_{A} \neq V$$

11

Hull efficiency
$$\eta_H = \frac{P_E}{P_T} = \frac{R_T V}{T V_A}$$

A measure of hull (stern) design to suit propulsor arrangement.

- It does not involve power conversion, so it is not a "true" efficiency.
- It can be greater than one, usual numbers around 1.05.

- P_D or DHP = power delivered to the propeller by the prime mover.
- Propeller converts rotating power to thrust power.

$$P_D = 2\pi nQ_D$$

n = Revolutions per second of shaft/propeller.

 Q_D = Torque delivered to the propeller.

- Power conversion between P_D and P_T is where the major loss is.
- Depending on where torque is measured:
 - Efficiency of propeller behind the ship, η_B .
 - Efficiency of propeller in open water, η_0 .

$$\eta_B = \frac{P_T}{P_D} = \frac{TV_A}{2\pi n Q_D}$$

$$\eta_0 = \frac{TV_A}{2\pi n Q_0}$$

- Q_D = Torque required by the propeller to deliver T at V_A behind the ship.
- Q_0 = Torque required by the propeller to deliver T at V_A in open water.

Relative Rotative Efficiency

Defined by the ratio:

$$\eta_R = \frac{\eta_B}{\eta_0} = \frac{Q_0}{Q_D}$$

- It is not a "true" efficiency (not a ratio of powers).
- It can be greater than one.
- Usual values around one.

- Power output at the prime mover is higher than delivered power.
- It is usually called shaft power (P_S or SHP) for gas turbines and brake power (P_B or BHP) for diesel engines.

 Occasionally, P_S is the power immediately fore of the stern tube bearing, and P_B is the power right at the prime mover.

16

Transmission Efficiency

Shaft transmission efficiency,
$$\eta_S = \frac{P_D}{P_S}$$

- Occasionally, more than one transmission (or mechanical) efficiencies are defined.
- The overall transmission efficiency will then be the product of the individual components.

Summary

Overall Efficiency, also known as Propulsive Efficiency, or Propulsive Coefficient (PC) is

$$\eta_P = \frac{P_E}{P_S} = \frac{P_E}{P_T} \times \frac{P_T}{P_D} \times \frac{P_D}{P_S} = \eta_H \eta_B \eta_S = \eta_H \eta_0 \eta_R \eta_S$$

 η_H , η_0 , η_R depend on hydrodynamics.

 η_S depends on mechanical efficiencies.

 η_0 is where the major loss is.

The Powering Problem: Maximize η_P

Will do this after we see how propellers work.

Endurance Fuel Estimation

- For Navy designs, use NAVSEA Design Data Sheet (DDS) 200-1
- Standard procedure for calculation based on:
 - Range
 - Cruise speed
 - Required SHP
 - Engine loading
 - Transmission efficiency
 - 24-Hour electric load
 - SFC
 - Margins and allowances
- Second step is to calculate volume required for fuel tankage by multiplying fuel weight in LT by 47.4

Calculations

NO.	ITEM	UNITS	SOURCE
1	Endurance Required	NM	Given
2	Endurance Speed	KNOTS	Given
3	Full Load Displacement	LTONS	Given
4	Rated Full Power	HP	Given
5	Design Endurance Power @ (2) & (3)	HP	Given
6	Average Endurance Power	HP	(5) * 1.10
7	Average Endurance Power/Rated Full Power		(6) / (4)
8	Average Endurance BHP	HP	(6) / Trans. Eff.
	24-hour Average Electric Load	kW	Given
10	Propulsion Fuel Rate @ (8)	lb/SHP/hr	Given
11	Propulsion Fuel Consumption	lb/hr	(10) * (8)
12	Generator Fuel Rate @ (9)	lb/hr	Given
13	Generator Fuel Consumption	lb/hr	(12) * (9)
14	Fuel Consumption for Other Services	lb/hr	Given
15	Total All-Purpose Fuel Consumption	lb/hr	(11) + (13) + (14)
16	All-Purpose Fuel Rate	lb/SHP/hr	(15) / (6)
17	Fuel Rate Correction Factor Based on (7)		Given
	Specified Fuel Rate	lb/SHP/hr	(16) * (17)
19	Average Endurance Fuel Rate	lb/SHP/hr	(18) * 1.05
20	Endurance Fuel	LTONS	(1)*(6)*(19)/(2)/2240
21	Safety Factor		Given
22	Endurance Fuel Load	LTONS	(20) / (21)

- Range and cruise speed have significant impact on ship size and cost
- Every ton of fuel is one less ton of payload the ship can carry
- For every ton of fuel, ships must now have tankage for one ton of ballast
- If tankage volume exceeds that available in otherwise non-arrangeable areas of the ship, the ship must grow to accommodate the extra fuel
- As required tankage volume increases, the center of gravity of the fuel rises, causing the overall ship KG to rise
- Increased fuel requirement impacts the fuel oil transfer and service systems
- In addition to increased acquisition cost due to extra weight and volume, fuel costs greatly impact annual O&S costs

SFC Comparison

Speed Operational Profile

When comparing power plants take into account the ship's operational profile.

A Typical Profile

- Diesels
- Gas Turbines
 - Simple cycle
 - ICR
- Steam
 - Conventional
 - Nuclear
- Fuel Cells
- Combinations

Additional Reading

- 1.4.1 Ship Resistance and Propulsion Notes.
- 1.5.1 The Use of Stern Flap Technology (M. Zoccola).